

ANNUAL REPORT 2010

Mech

UIUC, August 12, 2010

Analysis of off-corner longitudinal crack formation in slab casting and comparison of hot-tearing criteria

Junya Iwasaki (Visiting scholar from Nippon Steel)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Objective

- To reconstruct the circumstances of Breakout caused by off-corner crack at Yawata works, using computational model
- To develop hypotheses on longitudinal crack mechanisms at off-corner in slab casting
- To quantify the effect of trilinear profile of narrow face mold currently in use at Yawata works.

Outline

- 1. The Circumstances of Breakout
- 2. CON1D Model Fitting Condition
- 3. Thermal Mechanical Behavior with ABAQUS
- 4. Evaluation of Hot-tearing Criteria
- 5. Conclusions

2. CON1D Model Fitting conditions of Breakout condition

	Fixed face Narrow face	
Simulation shell	Fixed face	
Casting speed	23.4 mm/s	
SEN submergence depth	230 mm	
Pour temperature	1540 °C	
Meniscus dist. From mold top	96 mm	
Fraction solid for shell thickness location	0.35	
Treatment of superheat	- 1 : default	
Mean heat flux in mold - measured	1.279 MW/m ² 1.294 MW/m ²	
Fitting Parameters		
- Solid flux conductivity	1.00 W/mK	
- Liquid flux conductivity	1.00 W/mK	
 Location of peak heat flux 	- 0.03 m	
 Slag rim thickness at metal level 	- 2.20 mm	
- Slag rim thickness at heat flux peak	- 0.75 mm	
 Cold face scale thickness 	- 0.002 mm	
 Constant ratio of solid flux velocity 		
to casting speek	0.085 0.084	
CON1D prediction		
- Mean heat flux in mold	1.279 MW/m ² 1.293 MW/m ²	

2.1. Calculated Heat Flux

Figure 4. CON1D calculated Heat Flux profile

•

University of Illinois at Urbana-Champaign

2.2. Estimated Solidification Time

Note: Eulerian frame of reference (based on steady-meniscus position) Time when slice started at meniscus (s)

2.3. CON1D Model Verification with Plant

University of Illinois at Urbana-Champaign

2.3. CON1D Model Verification with Plant

3.3. Process Parameter

Table 3. Process Parameter

Casting speed	1402 mm/min
Mold length	900 mm
Meniscus dist. From mold top	96 mm
Time in mold	34.25 sec
Slab width at Meniscus	1360 mm
Slab thickness at Meniscus	258 mm
Narrow face taper	9.5 mm/side
	(1.56 %/m)
Carbon content	0.1617 wt.%
Solidus temperature	1479.78 °C
Liquidus temperature	1515.39 °C
Pour temperature	1540 °C

3.4. Parametric Study

Table 4. Important Parameters for simulation

3.6. Mold Distortion

Wide face and Narrow face Mold Distortion condition was calculated individually by FEM.

Narrow face

- +: Mold side
- : Shell side

CASE 5

CASE 5 is 3.8 times bigger than CASE 4. (compared with polar moment of inertia of area)

-0.30 -0.20 -0.10 0.00 0.10 0.20

Mold Distortion (mm)

Mold Distortion (mm)

0

100

600

700

800

Distance below Meniscus (mm)

Center 42mm from Center 82mm from Center

Metals Processing Simulation Lab University of Illinois at Urbana-Champaign Junya Iwasaki

Figure 14. Analyzed Mold Distortion

0

Distance from Center (mm)

195mm below Meniscus 393mm below Meniscus 698mm below Meniscus

Distance from Center (mm)

Meniscus

0.15

0.10 (Imm) 0.05 0.00 0.00 0.05 -0.10 0.15

-0.25

-0.30

0 20 40 60 80 100 120 140

Mold -0.20

nuous

1

nsortium

3.12. Analyzed result – Step 1

3.13. Calculation of Heat Flux at Off-Corner – Step 2

(5)

• Heat Flux equation across the Interfacial Gap

$$q_{\rm int} = h_{gap} (T_s - T_{mold}) \qquad \dots$$

$$h_{gap} = \frac{1}{\left(r_{contact} + \frac{d_{air}}{k_{air}} + \frac{d_{solid}}{k_{solid}}\right) + \left(\frac{1}{\frac{1}{\frac{d_{liquid}}{k_{liquid}} + \frac{d_{eff}}{k_{eff}}} + h_{rad}}\right) \dots (6)$$

$$h_{rod} = \begin{cases} \frac{m^2 \sigma (T_s^2 + T_{mold}^2) (T_s + T_{mold})}{0.75a (d_{liquid} + d_{eff}) + \frac{1}{e_{mold}} + \frac{1}{e_{steel}} - 1} & (T_{mprime} \ge T_{cristal}) \end{cases}$$

$$\frac{m^{2}\sigma(T_{s}^{2}+T_{cristal}^{2})(T_{s}+T_{cristal})}{0.75a(d_{liquid}+d_{eff})+\frac{1}{e_{slug}}+\frac{1}{e_{steel}}-1} \quad (T_{mprime} < T_{cristal}) \\ \dots (7)$$

 q_{int} = heat fluc transferred across gap (W/m²) $h_{gap} =$ effective heat transfer coefficient across the gap (W/m²K¹) h_{rad} = radiation effective h (W/m²K¹) T = surface temperature of the steel shell (°C) e = mold temperature + mold/slag contact resistance delta T (°C) Τ.... T_{mold} = surface temperature of the mold (°C) T_{nolig} = surface temperature of the mold at no liquid layer (°C) T_{crystal} = mold flux crystallization temperature (°C) $r_{contact} = flux/mold contact resistance (m²K/W)$ d_{air} , d_{solid} , d_{liquid} , d_{eff} = thickness of the air gap, solid, liquid flux and oscillation mark layers (mm) $k_{_{air}},\,k_{_{solid}},\,k_{_{liquid}},\,k_{_{eff}}$ = conductivity of the air gap, solid, liquid flux and oscillation mark layers (W/mK) m= flux refractive index σ = Stefan Boltzman constant (W/m²K⁴) a= flux absorption coefficient (m-1) $\mathbf{e}_{\text{steel}},\,\mathbf{e}_{\text{mold}},\,\mathbf{e}_{\text{slag}}\!=\!$ steel, mold and slag emmisivities

If the oscillation marks are filled with liquid flux

$$k_{eff} = k_{liquid} \qquad \dots (8)$$

If the oscillation marks are filled with liquid flux and air

$$k_{eff} = \frac{\left(T_s - T_{cristal}\right)}{\left(T_{noliq} - T_{cristal}\right)} k_{liquid} + \frac{\left(T_{noliq} - T_s\right)}{\left(T_{noliq} - T_{cristal}\right)} k_{air} \quad \dots \tag{9}$$

3.13. Calculation of Heat Flux at Off-Corner – Step 2

Assumption

3.13. Calculation of Heat Flux at Off-Corner – Step 2

· Calculated Heat Flux ratio at the Corner

$$R_{corner} = q_{int-corner} / q_{int-center} \quad \dots (13)$$

 R_{comer} = heat flux ratio at the corner $q_{int-corner}$ = heat flux at the corner (W/m²)

 $q_{int-center} = heat flux at the center (W/m²)$

Figure 23. Comparison between ABAQUS calculated Shell Thickness profile and measurements from B0 shell

4. Evaluation of Hot-tearing Criteria (ABAQUS Damage Strain / Nagata's Critical Strain)

ting

Figure 28. Analyzed Wide Face Inelastic Strain profile

4. Evaluation of Hot-tearing Criteria **Comparison of Damage Index**

• Analyzed shell thickness with ABAQUS agreed well with the measured shell thickness from the breakout shell.

• Increase in Nagata's Critical Strain Damage index is caused by lower Heat Flux at the corner due to the calculated interfacial Gap.

•Corner gap filled with air causes larger increase in Damage Index than with liquid-flux gap.

•Mold distortion with rigid corner has little effect on Damage Index. •Surprzingly: Depression decreases subsurface Damage Index due its ability to expand and contract. But, surface stress/strain at meniscus needs further work.

•Trilinear taper of narrow face helps to decrease Damage Index.

• The region of largest Damage index is almost the same as starting point of Breakout:

20 - 30mm from the corner and 0 - 3mm from the surface.

- Calculated maximum Damage index is 0.61
- •There must be some additional reason(s) to cause Breakout.

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Junya Iwasaki	41